A fuzzy discrete particle swarm optimization classifier for rule classification

نویسندگان

  • Min Chen
  • Simone A. Ludwig
چکیده

The need to deduce interesting and valuable information from large, complex, information-rich data sets is common to many research fields. Rule discovery or rule mining uses a set of IF-THEN rules to classify a class or category in a comprehensible way. Besides the classical approaches, many rule mining approaches use biologicallyinspired algorithms such as evolutionary algorithms and swarm intelligence approaches. In this paper, a Particle Swarm Optimization based discrete classification implementation with a local search strategy (DPSO-LS) was devised and applied to discrete data. In addition, a fuzzy DPSO-LS (FDPSO-LS) classifier is proposed for both discrete and continuous data in order to manage imprecision and uncertainty. Experimental results reveal that DPSO-LS and FDPSO-LS outperform other classification methods in most cases based on rule size, True Positive Rate (TPR), False Positive Rate (FPR), and precision, showing slightly improved results for FDPSO-LS. Keywords-Fuzzy rule-based classification system, Pittsburgh approach, particle swarm optimization, local strategy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers

This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on TakagiSugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the ...

متن کامل

FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A Hybrid of Bacterial Foraging Optimization and Particle Swarm Optimization for Evolutionary Neural Fuzzy Classifier

This study presents a new evolutionary learning algorithm to optimize the parameters of the neural fuzzy classifier (NFC). This new evolutionary learning algorithm is based on a hybrid of bacterial foraging optimization and particle swarm optimization. It is thus called bacterial foraging particle swarm optimization (BFPSO). The proposed BFPSO method performs local search through the chemotacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Hybrid Intell. Syst.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014